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Abstract

The present study describes the assimilationsafhdirge in-situ data for operational flood foredagt The study
was carried out on the Marne river (France) catcimnehere lateral inflows's uncertainty are impontatue to karstic
areas. This source of error was partly accountedusing an Extended Kalman Filter algorithm buit the top of a
monodimensional hydraulic model. The lateral inBowere sequentially adjusted over a sliding 48-hiae window.
The correction leads to a significant improvementhie simulated water level and discharge in relgsia and forecast
modes. These results pave the way for the opesrdtime of the data assimilation procedure for reale forecasting
at the French flood forecasting service.

1. INTRODUCTION

In 2006, 9% of the French population was exposdtbbd risk, one of the greatest natural riskssoag
damage and human loss [21]. The French flood fstewn service (SCHAPI - Service Central
d'Hydrométéorologie et d'Appui a la Prévision desnidations), in collaboration with the 22 localaditb
forecasting centers (SPC- Service de PrévisionQitaes) produces a twice-daily broadcast vigilaneg m
available to governemental authorities and gemmralic (http://www.vigicrues.gouv.jr

In order to effectively support emergency managenaed decision making it is essential to properly
characterize the different sources of uncertaintyhydrologic forecasts [3][25]. The reliability dfood
forecasting strongly depends on the quality ofhidraulics model, its boundary conditions (upstreard
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lateral inflow), hydrological initial conditions dnnumerical parameters. Much effort has been didect
towards the estimation of hydrologic and hydraualiodel parameters especially for the statisticalyasigof
parameters uncertainties usually using a histoba&dh of data, assuming time-invariant paramg&ja4].

In practice, in addition to model simulation anddbacalibration, the reliable operation of a wdteid
system requires a continuous correction of theciseas observational data become available [18. T
application of data assimilation (DA) [1], whichtopally merges information from model simulationsda
independent observations with appropriate unceéytamodelling, has proved promising in improving
prediction accuracy and quantifying uncertainty ][13][14][16]. Still, the use of such methods by
operational agencies is rare and the need for mmting effective DA in the flood forecast procéss
increasing when flood frequency is likely to ingeas a result of altered precipitation pattenggéred by
climate change [5].

DA offers a convenient framework to overcome soofethe limits of the calibration processes:
observations and simulation outputs are combinedstomate an optimal set of model parameters and
consequently reduce uncertainties in the simulatigith the increasing abundance of new in-situ and
remote sensing observations, DA was applied inraégtudies formulated in an operational frameweyk.
great number of implementations were made on tdyydrogical models in order to improve soil moistu
initial conditions. Thirel etal. (2010a,b) [22][23] assimilated past dischargeshtain a better initial soil
moisture state and improve ensemble streamflow latiopns. Dechant and Moradkhani (2011a) [4] used
SNOTEL data to improve the estimation of snow waterage and consequently improve the ensemble
streamflow prediction from the National Weatherv&sr River Forecast System (USA). Seaakt(2003,
2009) [19][20] explored variational assimilation lofdrologic and hydrometeorologic data into opersi
hydrologic forecast. The Kalman Filter (KF) [8] alithm is the most commonly used sequential DA
algorithm which results in the optimal estimatian finear dynamic models with Gaussian uncertasntie
was extended to non linear problems using a firderoapproximation of Taylor series, namely Extehde
Kalman Filter (EKF), or an ensemble approach foe tBnsemble Kalman Filter (EnKF) [7]. These
algorithms are also now widely being used in hyolygland hydraulics for the estimation of modelesat
[10][12] as well as model parameters [15].

In the context of hydrodynamics modelling, Rictak (2011) [17] showed that the EKF assimilation of
water level observations on the Adour catchmen wie 1D hydraulic model MASCARET [9] developed
by LNHE (Laboratoire National d'Hydraulique et dfgnnnement) from EDF-R&D (Electricité De France
Recherche et Développement) enabled to improvel ffooecasting of 60% at a one hour lead time and of
25% at a twelve-hour lead time. In the presentystadsimilar approach is applied to flood foreaagin the
Marne catchment where the presence of karstic ane&es it hard to correctly specify upstream amerh
inflows to the model. In the framework of operatibflood forecasting, the SAMA (Seine Amont Marne
Amont) SPC has developed two different models am limited areas of the Marne catchment described in
Figure 1. On these limited areas, the batch caidraf the model was possible and the uncertairdige to
lateral inflow were accounted for by artificiallgjasting the Strickler coefficients. Still, in ord® increase
the forecast time on the Marne catchment, both isodere recently merged into a global model farenor
difficult to calibrate. The need for a cohereniraation of the so far neglected inflows, which eg@nt the
dynamics of the karstic areas, and the unmodelbdtaries, which represent the dynamics of catchmen
areas, motivates the use of a DA procedure usingitin measurements. A realistic and time varying
estimation of the lateral inflows is then achiewsihg a sequential data assimilation approach oftobd
events over 2001-2010. It is shown that, in spfteestain limitations described further on, thigpegach
provides a reliable estimate of the lateral infloarsd leads to the improvement of the flood foreeast
meaningful lead times for operational use.

The structure of the paper is as follows. Secigmovides a description of the Marne catchmeratlsio
provides the arguments for building a DA schemedtimate lateral inflows. The DA method is desatibe
Section 3 along with the choices made for the imglletation of the algorithm. Section 4 gives an oesy
of the results, highlighting the merits of the agwh for flood forecasting along with its limitat® on a
representative flood event. Conclusions are gineBection 5.

2. MODELING OF THE MARNE CATCHMENT
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The Marne catchment is a karstic basin located &abke Paris basin. The Marne river is a 525 &nyl
tributary of the Seine river, its source is locatedthe Langres Plateau in the Haute-Marne depattme
(Figure 1). The study is carried out on the upstrggart of the river that is strongly sensitive txdl
precipitation and where flash floods (5 to 128shwithin a 24h period in October 2006 at Condes)uocc
The landscape of the catchment is defined by fedeglateaus, incised valleys and presents numerous
limestone outcrops. Therefore the catchment areladaes karstic areas and tributaries whose behaisou
highly non linear and thus difficult to forecast.
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Figure 1. The Marne catchment, the sub-models are circligdl dashed lines. The hydrological observing
stations § S, S and Q are represented by black triangles. Lateral inflad®y, Q, @, Q, and Q@ are
represented by black dots and the observing s&atnrwhich they depend are in parentheses.

As of today, the operational forecast relies amititegration of two sub-models on the Marne Amont
and Marne Vallage areas (Figure 1). These modesbased on the mono-dimensional numerical code
MASCARET for hydraulics describing the Saint-Vené8hallow Water) equations and developed by EDF-
R&D and CETMEF (Centre d'Etudes Techniqgues Mariéimet Fluviales). They were calibrated
independently using water level in-situ measureméam five hydrological observing stations (Chaumto
Condes, Mussey, Joinville and Chamouilley). Theeauastimation of the lateral inflow that leads te th
underestimation of the simulated water levels aisdhéirge was partly corrected by reducing the I8aic
coefficients and thus artificially increasing theater level. These sub-models are used for opegdtion
forecast at SAMA SPC since 2008. They provide sfyatg water level signal, still discharges arealsy
underestimated and the maximum lead time for thectst is 15 hours.

In order to extend the maximum lead time and befreim measurements at Saucourt, the sub-models
were merged into a global model extending fromi®&fil to Chamouilley and including the karstic arefs
the Rognon. The upstream flows are specified & fipstream stations (Marnay, Louviéres, Villiers, L
Créte and Humberville). This global model undereates the discharges of 50% on average over ten
significant events as presented in Figure 2 foepresentative event for Condes and Mussey observing
stations (observations are in blue and simulatidaspted by Free Run, in black). Indeed, the glotadel
area is about 2250 Kmvhen the area controled by the five upstreamastatis only about 755 KmThus it
appears that the modeling of lateral inflows, destie lack of hydrologic rainfall-runoff model dme area,
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represents a key step towards the use of the ghobdél for the Marne catchment. Five lateral infowere
then added to the model to represent the exsurgaridbe Suize (), the Seurre on the Rognon catchment

(Qz and Q), and tributaries upstream Musey,J@nd Chamouilley (€).
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Figure 2: Observed (blue crossed curves) and simulatechaliges for Free Run (black solid curves) in
Condes (thin curves) and Mussey (thick curves).dd&008 event.
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Figure 3: Discharge at Chamouilley, observation (blue @dssurve), Free Run (black solid curve) and Free
Run with Q (green dotted curve). March 2008 event.
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Given the homogeneous response of the catchmant doeanic rainfall event, a water budget approach
enables to describe a coherent, yet perfectibleawer of the catchment. For instance, adding #teral
inflow Q5 estimated as eight times bigger thantpegrograph at Villiers leads to a satisfying sintialia of
the discharge at Chamouilley as illustrated in FégBl where observation is represented by the blssed
curve, the Free Run simulation is in black andRfee Run simulation with the addition of the lakénélow
Q5 is represented in green by the dotted curve.l@impproach using Villiers and Humberville as
elementary hydrographs to estimate each laterédvwinfvas used to identify multiplicative coefficiant
Ai(where Qnen(t)= AiQi(t)), with i0 [1, 5] and their statistics, from a batch calitmatover the 10 flood
events. These values presented in Table 1 canda#lygimproved with a sequential method that alldars
temporal variability of the coefficients, essenfial instance for summer and early automn eventsrvithe
karst behavior is complex and the Villiers statimay not be representative of the entire catchment's
dynamics.

Qi Elementary hydrograph| A; Std
Q: Villiers 3 0.8
Q> Villiers 4 1.3
Q3 Humberville 3 1.8
Q4 Villiers 2.5 1.4
Qs Villiers 5.5 2

Table 1: Multiplicative corrective coefficients;&or lateral inflows and standard deviations with i[1, 5].

3. SEQUENTIAL DATA ASSIMILATION METHOD

Data assimilation approaches aim at identifying dptimal estimate of the true value of the unknown
variable x that includes, in this work, the set of correcteeefficients A with i0J [1, 5]. The a priori
knowledge on these coefficients given in Table dcdbes the background vectdt. The observation vector
y° is composed of hourly discharge measurementsnseceative variable, at Condes, Saucourt, Mussey
and Chamouilley (respectively denoted by S, S and S in Figure 1). The analysis is performed on a
sliding time window, over which the ;Acoefficients are assumed to be constant. Assurthagy the
background, the observation and the analysis abéased, the analysis vectaf* for cycle k can be
formulated as a correction to the background patenste

x = xp + Ky (v — He(x}))
whereK,, = B, Hf, ,(H;B,Hf, + R;;') is the gain matrixB,, R, are the background and observation errors

covariance matrixs ang, = Hy(X,) is the model equivalent of the observations, geedr by the
observation operatd,.

The observation operator consists of two operatitine costliest of which is the non-linear int¢igra
of the hydraulics model given the upstream anddatitow conditions over the assimilation windowhél
second operation is the selection of the calculdiecharges at the observation points and at teereation
times.Hy, (xﬁ) represents the discharges at the observation poidtémes computed by MASCARET using
the background parameters-Al.

The Jacobian matril, , is the tangent linear of the hydraulics model cotag in the vicinity ofx? as
follows:
Hy (xP + Ax) = Hy(x]) + Hy A%
andH,’;b can be approximated using a finite differences seheritten as:
dy (’)Hk(xZ) _ Hk(x,lz + Ax) - H,(x2) Ay

H,, = —
kb ™ 9x 0x Ax

Ax
The local estimation of the tangent linear dynanoitthe model with respect to the boundary condgiof
the domain is a strong hypothesis. This methodbeaseen as an EKF algorithm without model errdrs (t
model is considered as perfect). Since there ispropagation model for the parameters, the usual
propagation steps of the KF algorithm are irrelévhare: the background error covariance matrix is
invariant between the cycles.
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The analysis is cycled over the period coverirgehtire flood event, thus allowing # vary between
the cycles. For cycle k, the observations oveffitse8 hours (the re-analysis period) are useestonate the
optimal coefficients and a 24-hour forecast isiedrout. Each of the five lateral inflows Q1, Q@3, Q4
and Q5 is controlled using downstream measurenieots the hydrological observing station as desctibe
in Figure 1; Q1 is controlled by Condes and Mus&&/and Q3 are controlled by Saucourt and Mussdy, Q
is controlled by Mussey and Chamouilley and Q5dstmlled by Chamouilley only. A 5 hs* standard
deviation error is assumed on the discharge measunts to account for errors in misadjustment ofgues
tube and extrapolation of water level-dischargagaturves. The background error covariance is riteest
by a diagonal matrix with the same standard denagrror on every Aestimated as the mean of those
described in Table 1. The data assimilation alboritvas implemented using the Open-PALM dynamic
coupler developed at CERFACS and designed to cangependent code components with a high level of
modularity in the data exchanges while providirgiraightforward parallelization environment [2].

4. RESULTS

The benefits from the application of the sequérralysis over the 10 floods events for the Marne
cacthment are summarized in Table 2 presenting&sh-Sutcliffe criteria computed with data assitiola
(DA) and without (Free Run) at the maximum leadetifor the forecast at each observing station. & wa
shown that the assimilation of discharge measur&valows for a significant improvement of the slatad
discharges in re-analysis (not shown) and foregaste; with an the average improvement of 0.91 at th
maximum lead time.

Observing station Condes Mussey Joinville Chameyill Saucourt
Forecast lead time +6h +12h +13h +21h +10h
Free Run 0.61 0.01 0.14 -1.38 -0.20
DA 0.87 0.78 0.55 0.47 0.80
Improvement 0.26 0.77 0.69 1.85 1.

Table 2: Nash-Sutcliffe criteria for Free Run and DA siatitns averaged over 10 flood events over 2001-
2010 at maximum lead time for each observing statio

For the major flood event in December 2010, thee afsthe DA procedure for real-time forecast would
have improved both discharge peak forecasts of Hs Hustrated in Figure 4 (only the first pealsigown).
The discharges are presented on the left vertidgalaand water levels are on the right vertical axith solid
thin and thick lines, respectively. Observatiors m@presented by blue crossed curves, the Fred Rhour
forecast by black solid curves and the analysibdi# forecast by red dashed curves. For the digehand
water level, the area between observation and Roeeis shaded in red when the model underestintaées
signal and in blue when it overestimates the sighlk corrective coefficients for,QQ,, Qs, Qs and Q
represented in Figure 5 are globally smaller thavh&n the Free Run overestimates the observedadjech
and bigger than 1 where the Free Run underestinta¢esbserved discharge. These values also depend o
the sensitivity of the discharge at the observiagjan with respect to each;Ahis information is accounted
for within the linearized observation operaltor

Still, the assumption of a constant correctionhef lateral inflows over a DA analysis cycle caadédo
an inappropriate correction as displayed in Figufer Day 3. The 12-hour forecasted discharge at Ba
resulting from the DA procedure (175°.81 where the solid vertical line intersects the thiekl dotted
curve) is computed using the corrected inflows Itegyfrom the assimilation of the difference bebmethe
Free Run and the observation during the 8-houiogéan Figure 4 represented in grey between thethivo
vertical lines at Day 2 + 2h and Day 2 + 10h. Otr@s period, the average discharge (thick curves)
difference is bigger than that at Day 3, thus tepPocedure leads to an over correction of thehdisge (an
over decrease in this case): the solid red linBagt 3 is below the blue crossed line. To sum itifithe
model-observation error is not monotonous overréanalysis and forecast period, the DA procedare c
lead to an under or over correction. A possibletage for this problem is to shorten the re-anslgsiriod
and thus allow for more temporal variability of tharective coefficient.
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Figure 4: Discharge (thick curves) and water level (thin es)vat +12h, December 2010 (Mussey):
Observations (blue crossed curves), Free Runi(isialad curves), DA analysis (red dashed curves).
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Figure5: A; coefficients for @ @, Qs, Qsand Q during December 2010 event.

Globally in Figure 4, the water level is also sfigantly improved (thin curves), still the corremt of
the lateral inflows with assimilation of the discfp@ measurements does not improve the water leak p
simulation, it even degrades the first peak at Bayl2h. Indeed, when the relation between watel lend
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discharge in the model is not coherent with thati@h between water level and discharge in therohsen,

the sign of model-observation error on discharggifferent from the sign of the model-observatioroeon

water level. This is the case from Day 2.5 to D&y, &he Free Run simulation overestimates the digeh
(blue area in Figure 4) but underestimates the mtate| (red area in Figure 4). Here, the DA coticet

tends to decrease the lateral inflow in order trel@se the simulated discharge, thus leading tdebeease
of the simulated water level when the latter wasaaly too small.

The friction coefficients (Ks) of the hydraulic o@ are mean values obtained from the calibration
procedure using discharge data, over 10 flood evehihe resulting values for the hydraulic section
containing Mussey are 20 for the river channel aBdor the flood plain. These values are potentiatt
well suited for high discharge events and mightrésponsible for a non-physical local relation betwe
discharge and water level. To account for uncestaimthe topography and bathymetry, a local cdioacof
the Ks coefficient at Mussey is applied (over ari0fection downstream of the observing station). As
illustrated in Figure 6, a change in Ks allowsnprove the simulated water level while the disgeais left
unchanged by this local modification. Once therkdtmflows were corrected through the DA procedtine
simulated discharge is improved over the wholedlegent, still the water level is overestimated (aeeas
in Figure 6) from day 1 to 2.5 and 5 to 9 and ues@mated at the flood peak (blue area in FigureA6)
approximate calibration of the Ks coefficients hi@ved to obtain the green curves in Figure 6;river
channel and the flood plain coefficients are inseeato 27 and 15 respectively over the overestimati
periods and decreased to 16 and 9 over the unimleaéisih period. The local correction of the Ks
coefficients improves water level forecasts withobanging discharges. Based on these results, rmngoi
work aims at including the Ks coefficients withihet DA control vector of the previously described

procedure.
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Figure 6: Discharge (thick curves) and water level (thinves) at +12h, December 2010 (Mussey):
observations (blue crossed curves), DA analysid (tasched curves) and DA analysis with modified

Strickler coefficient (green dotted curves).

As the correction of lateral inflows, Ks coeffiois must be corrected sequentially as observations
become available. The linear approximation of tatron between the Ks coefficients and the sinedlat
hydraulic state should be investigated. Figurelustitates the nonlinear impact of the perturbatérthe
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river channel Ks at the flood peak, at Mussey, adothe reference value Ks

20. For instance, a

perturbation of 4 leads to a maximum discrepancywater level of 2cm with respect to the linear
approximation computed for dKs = 2 (pink dashee lim Figure 7). For a positive perturbation in s
non linearity is significantly smaller than for raiye perturbations with a water level differende6ocm
when the Ks is increased from 20 to 32 and up terB3vhen the Ks is decreased from 20 to 8. In otaler
keep the non linearity impact small on the EKF gsial the correction to the Ks coefficient showdchain in

a limited interval such as [-5, 5].
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Figure 7: Impact on the water level on the peak of the pledtion of the river channel Ks coefficient for

dKs[-12;12] (black curve) and dKs=2 (pink dashea)i

5. CONCLUSION

The sequential assimilation of discharge measumn&sme real time mode was presented in this
paper. The study focuses on the application obxdarteled Kalman Filter (EKF) algorithm for the Marne
catchment under the assumption that the relationdas the lateral boundary conditions of the doraaic
the simulated discharge is fairly linear. It waswh that the estimation of the time varying conttibns of
the karstic areas and the neglected tributariebeachieved. This leads to the improvement of the
hydraulic state forecast at meaningful lead tinreofmerational use. Since the method developediferat
catchment dependent, it was applied for other Freatchments and it is currently being integratethe
real-time forecasting platform for operational as&CHAPI. The reduced computational cost of the
procedure is also a strong advantage. The exten$itye control vector to model parameters sucthas
Strickler coefficients is one of the perspectivasflirther works as it will allow to correct thdaton

between water level and discharge within the model.
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